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ABSTRACT
Nowadays, large collections of photos are tagged with GPS
coordinates. The modelling of such large geo-tagged corpora
is an important problem in data mining and information re-
trieval, and involves the use of geographical information to
detect topics with a spatial component. In this paper, we
propose a novel geographical topic model which captures
dependencies between geographical regions to support the
detection of topics with complex, non-Gaussian distributed
spatial structures. The model is based on a multi-Dirichlet
process (MDP), a novel generalisation of the hierarchical
Dirichlet process extended to support multiple base distribu-
tions. Our method thus is called the MDP-based geograph-
ical topic model (MGTM). We show how to use a MDP
to dynamically smooth topic distributions between groups
of spatially adjacent documents. In systematic quantitative
and qualitative evaluations using independent datasets from
prior related work, we show that such a model can exploit
the adjacency of regions and leads to a significant improve-
ment in the quality of topics compared to the state of the
art in geographical topic modelling.
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1. INTRODUCTION
Very large amounts of geographically distributed data are

available to social media websites, companies and govern-
ments. Common sources of geospatial knowledge include
user-generated content with GPS coordinates (e.g. photos
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and messages sent from smartphones), user data with infor-
mation about the place of residence, or server logs with IP-
based estimations of client locations. Such geographically
distributed data are a rich information source, describing
the environment in which they were created. Geographi-
cal knowledge can be exploited in a broad range of applica-
tions that take into account environmental and cultural dif-
ferences between locations – ranging from marketing cam-
paigns and recommender systems to data mining applica-
tions.

Under the bag-of-words assumption, both words and geo-
graphic positions can be modelled as being generated by
latent topics in a probabilistic model. Existing approaches
for geographical topic modelling adopt topic models such
as probabilistic latent semantic analysis (PLSA) [10] or la-
tent Dirichlet allocation (LDA) [5] and extend the models
by assigning distributions over locations to topics, or by in-
troducing latent geographical regions. In models which ex-
tend topics for spatial distributions (such as two-dimensional
normal distributions) [15], topics with a complex (i.e. non-
Gaussian) spatial distribution cannot be detected. In mod-
els with latent, Gaussian distributed regions [18], documents
within a complex shaped topic area do not influence the
topic distribution of distant documents within the same area.
Therefore, topics with a complex spatial distribution such as
topics distributed along coastlines, rivers or country borders
are harder to detect by such methods. More elaborate mod-
els introduce artificial assumptions about the structure of
geographical distributions by introducing hierarchical struc-
tures [2] or by defining Gaussian process kernels [1] in ad-
vance. Additionally, some approaches [12, 18] do not model
document-specific topic distributions.

In contrast to existing models, the multi-Dirichlet process
(MDP) based geographical topic model (MGTM) presented
in this paper uses a MDP mixture model that groups doc-
uments by geographical regions. A geographical network
between spatially adjacent regions is used to equalise topic
distributions within coherent topic areas. Consequently, it
allows for constructing generative models which provide a
better data fit than existing approaches.

The rest of this paper is organised as follows. Section 2 re-
views previous work on geographical topic detection. In Sec-
tion 3 we describe the theory and the components of MGTM.
We establish the baseline reference model, introduce its ex-
tension using the MDP, and develop corresponding inference
procedures. In Section 4 we evaluate our basic model against
state-of-the-art models, using reference datasets that have
been used in prior work. Section 5 concludes our work.



2. GEOGRAPHICAL TOPIC MODELS
A geographical topic model is a statistical model of a

set of spatially distributed documents that uses word co-
occurrences both within texts and within geographical re-
gions. From an application perspective, location-aware topic
models should satisfy the following top-level requirements:

(1) Modelling document-specific topic distributions: Doc-
uments typically cover a small set of topics, an assump-
tion used for prediction (e.g. tag recommendation)

(2) Recognition of topics with complex (e.g. non-Gaussian)
spatial distributions

(3) Detection of coherent topic regions that form complex
shaped areas of similar characteristics (e.g. countries,
seas, mountain ranges, etc.)

(4) Estimation of parameters from data: Topic models
should not require prior knowledge for the parameter
setting

In the following, we review existing models for geographical
topic modelling, focusing on these requirements.

On a high level, existing approaches to geographical topic
detection can be divided in two groups: models using a dis-
crete set of locations and models using a continuous geo-
graphical distribution associated with topics. We focus on
topic models for modelling text and location only, excluding
extensions for other features such as time and authors.

2.1 Methods Using Discrete Locations
The model of Mei et al. [12] extends probabilistic latent

semantic analysis (PLSA) [10] to model spatio-temporal in-
formation by mixing the topic distribution of documents
with location- and time-specific topic distributions. Loca-
tions and timestamps are modelled as discrete sets. In prac-
tice, the division of data into location and time intervals
results in sparse data.

Wang et al. [17] base their model on latent Dirichlet al-
location (LDA) [5]. In their model, topics are multinomial
distributions both over words and a discrete set of locations.
The authors are aware of the fact that some related loca-
tions, such as locations within a country, are expected to
share a similar topic distribution. They suggest to introduce
a hierarchy between locations such as countries or cities to
share topic information by merging those locations.

Finally, Yin et al. [18] present a location driven model
(LDM) based on PLSA, in which geographically distributed
data are clustered in a preprocessing step to obtain a dis-
crete set of locations. In the model, all documents within a
spatial cluster share a common topic distribution. Clusters
are independent and share a global set of topics.

2.2 Methods Using Continuous Locations
A first continuous approach to geographical topic mod-

elling was proposed by Sizov [15]: GeoFolk, a model similar
to the model of Wang and based on LDA [5]. Instead of us-
ing a multinomial distribution over locations, every topic in
GeoFolk has a Gaussian distribution on the coordinates of
a document. The drawback of this kind of topic modelling
clearly is the limited geographical distribution of topics: Ev-
ery topic has a normal geographical distribution and topic
areas that are not normal distributed are split into indepen-
dent topics.

Yin et al. [18] therefore introduce latent geographical topic
analysis (LGTA), an extended version of GeoFolk based on

PLSA. Instead of directly assigning normal distributions to
topics, in the model of Yin several normal distributions are
assigned to regions which have a distribution over the set of
topics. Clearly, there now can be several Gaussian regions
sharing the same topic. Regions now take the role of dis-
crete locations as in the model of Mei. Therefore, the model
inherits the problem of merging regions of one kind.

In [2], Ahmed et al. present a hierarchical topic model
which models both document and region specific topic distri-
butions and additionally models regional variations of topics.
Relations between the Gaussian distributed geographical re-
gions are modelled by assuming a strict hierarchical relation
between regions that is learned during inference.

A more general approach for modelling arbitrary, complex
features such as geolocations was introduced by Agovic and
Banerjee [1]. Given that the similarity between topic distri-
butions of documents directly depends on their respective
position in the feature space, topic distributions of docu-
ments can be sampled from a Gaussian process (GP) prior
which encodes the similarity of documents in the feature
space. However, it is unclear how to choose the right GP ker-
nel in the geographical scenario, as the similarity of document-
topic distributions across the geographical space typically
is hard to predict and involves complex structures such as
countries or geographical zones.

2.3 Drawbacks of Existing Methods
The existing geographical topic models described in the

previous sections have major drawbacks with respect to the
four requirements discussed at the beginning of this sec-
tion. The models of Yin and Hong [11, 18] do not model
document-specific topic distributions; the model of Sizov
[15] cannot detect topics with a complex spatial distribu-
tion; and the model of Wang [17] supports the merging of
semantically related geographical regions but lacks a general
merging method. Finally, only the model by Ahmed et al.
is parameter-free [2].

Model Requirements
(1) (2) (3) (4)

Mei et al. [12] X
Wang et al. [17] X X (X)1

GeoFolk [15] X
LDM [18] X
LGTA [18] X
Agovic et al. [1] X X (X)1 (X)1

Ahmed et al. [2] X X (X)1 X
MGTM X X X X

Table 1: Requirements met by existing models, and
by our model (MGTM). 1partial fulfilment

Models based on a hierarchical relation between regions
such as the model by Wang et al. [17] and Ahmed et al. [2]
have drawbacks, not only in modelling complexity as men-
tioned in [17]. Particular hierarchical relations such as city-
state-country might work for representing geographical top-
ics such as languages or cultural behaviour. However they
would be misleading e.g. for topics representing geographi-
cal features such as rivers or mountain areas. In most cases,
there will be no hierarchy which fits all topics. Addition-
ally, when introducing a hierarchy of Gaussian distributed



regions as in [2], geographical topics which fit into such a
hierarchy will be preferred over topics with a non-elliptic
shape such as, say, coast lines, which would be poorly ap-
proximated by a hierarchy of Gaussian regions. Therefore,
introducing a hierarchical relation between regions will pre-
vent the model from properly learning topics whose complex
geographical distribution does not fit such a simple hierar-
chical structure. Table 1 summarizes the requirements met
by the models presented.

3. MODEL
We consider the general setting of documents consisting

of words, and annotated with their geographic location. For
topic modelling, words and location of documents are as-
sumed exchangeable. Formally, we have a corpus of doc-
uments D = {d1, . . . , dM} of size M = |D|, and a docu-
ment dj consists of a set of Nj words denoted by wj =
(wj1, . . . , wjNj ) and a geographical location, a latitude and
longitude pair locj = (latj , lonj). By de Finetti’s theo-
rem [5], words and location can be modelled as a mixture
of independent and identically distributed random variables
generated by latent factors. The document location is gen-
erated by L latent factors corresponding to geographical
clusters associated with continuous distributions on the ge-
ographical space. The K latent factors assigned to words,
written as topics θ1, . . . , θK , are multinomial distributions
over the vocabulary of size V .

In the following section we present three novel geograph-
ical topic models: a basic model using a three-level hierar-
chical Dirichlet process, an extension that considers neigh-
bour relations between regions by model selection and an
improved version based on the multi-Dirichlet process intro-
duced in this paper.

3.1 The Basic Model
For the basic geographical topic model, we model locations

and words separately for several reasons:

Detection of coherent topic areas. The separation of spa-
tial clusters and document semantics allows us to define
meaningful neighbour relations between spatially adjacent
clusters. In fact, as shown later, the use of these spatial ad-
jacency relations allows us to detect coherent topic areas and
to significantly improve the topic quality in the final model.
Existing models that use continuous document positions do
not allow a meaningful definition of spatial adjacency be-
tween geographical regions or topics as their position is in-
fluenced both by words and document locations.

Computational complexity. Probabilistic clustering meth-
ods in two- or three-dimensional space usually converge very
fast, while samplers for probabilistic topic models usually
take many iterations. Integrating both processes would re-
sult in a high computational overhead which is unacceptable
for large datasets in real-world applications.

The basic topic model takes a set of geographical clusters
as input. In order to get a clustering which also is a genera-
tive model of document positions, we fit a mixture of Fisher
distributions to the data. The clusters are used to group
documents in a three-level hierarchical Dirichlet process in
order to ensure that documents within a geographical clus-
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Figure 1: The graphical model for (a) the basic
model and (b) MGTM.

ter share similar topics. This basic topic model is identical
to the topic model for multiple corpora proposed by Teh et
al. [16].

3.1.1 Geographical Clustering
Existing approaches for geographical topic modelling rely

on a representation of document positions in Euclidean space
of latitude and longitude. This causes problems for docu-
ments located close to the poles or to the International Date
Line. Instead, we use the unit sphere as a model for the
shape of the Earth. For geographical clustering, we assume
that document locations follow a Fisher distribution. The
Fisher distribution is a probability density function on a
three-dimensional sphere comparable to an isotropic Gaus-
sian distribution on the plane [9]. The Fisher distribution is
defined as

f (x | κ, µ) =
κ

2π(eκ − e−κ)
eκµ

Tx

where µ is the mean and κ is the concentration parameter.
Given the number of Fisher distributions L and assuming
a uniform prior, we use the expectation-maximisation al-
gorithm for parameter estimation. For the concentration
parameters we use the approximation given by Banerjee et
al. [4]. To construct a non-parametric model where the num-
ber of regions is inferred from data, the number of clusters L
can be sampled using a Dirichlet process that samples from
a space of Fisher distributions. The geographical distribu-
tion of topics will depend on the number of regions. In order
to ensure comparability, the number of regions is kept as a
fixed parameter in the algorithms evaluated in this paper.

3.1.2 Topic Detection
The choice of the underlying topic model is crucial for

the task of geographical topic detection. Existing methods
typically are based on PLSA [18] or LDA [11, 15]. We de-
cide to base our models on the hierarchical Dirichlet process
(HDP) [16] instead as it is non-parametric, yields a sound
generative model and supports a grouping of documents by
external factors such as geographical clusters. The hierar-
chical Dirichlet process is a Bayesian approach to the topic
detection problem and shares many properties with LDA:
There is a Dirichlet-multinomial document-topic distribu-



tion assigned to every document and every topic is repre-
sented by a Dirichlet-multinomial topic-word distribution.
However, in the hierarchical Dirichlet process the number of
topics is not fixed. Instead, every topic is sampled from a
Dirichlet process with a base distribution over H, the space
of possible topic-word distributions. All model parameters
can be sampled using hyperparameters, resulting in a fully
non-parametric model. In order to share topics between doc-
uments, the document-topic distribution is sampled from a
higher-level topic-distribution, i.e. a global topic distribution
which is itself a draw from a Dirichlet process [16].

It is natural to extend the hierarchical scheme by adding
layers for document groups with characteristic topic distri-
butions. We use the three-layer Dirichlet process hierarchy
for modelling document corpora proposed in [16] but group
the documents by geographical regions instead using the spa-
tial clustering of documents defined before.

The three-level hierarchical topic model using geographi-
cal clusters is defined as follows: Given a set of L geograph-
ical clusters, each cluster is a subset Dl of the document
corpus. First we draw a global probability measure G0 over
the topic space from a Dirichlet process with base distribu-
tion H on the continuous topic space:

G0 ∼ DP(γ,H),

where γ is the concentration parameter for the Dirichlet pro-
cess, influencing the sparsity of the global topic distribution.
A symmetric Dirichlet prior is placed over H. The mixture
proportions β for the global topic distribution are generated
by a stick-breaking process β ∼ Stick(γ) [16]. For every
geographical cluster, we draw a region-specific topic distri-
bution Gl from the global distribution over the topic space
G0:

Gsl ∼ DP(α0, G0), l = 1, . . . , L

with mixing proportions βsl and concentration parameter α0.
The documents from each region-specific document set Dl
draw a document-specific topic probability measure from Gl:

Gdj ∼ DP(αs, G
s
l ), dj ∈ Dl

with mixing proportions πj . All clusters share the common
concentration parameter αs. The resulting model is given
in Figure 1(a). A collapsed Gibbs sampler and strategies for
hyperparameter inference are given in [16].

3.2 The Neighbour Aware Model
We modify the basic model to include adjacency relations

between geographical clusters. Using geographical neigh-
bour relations has several advantages over the basic model:

Exploiting similarity for smoothing. Geographical clus-
ters adjacent in space often are similar in their topic distri-
bution. Most geographical topics cannot be approximated
by a simple spatial probability distribution such as a Gaus-
sian or Fisher distribution and for these complex topic areas,
coherent sets of multiple spatial distributions are a reason-
able approximation. Therefore adjacent regions may smooth
their topic distributions to increase the probability of detect-
ing such coherent topic areas.

Sharing emerging topics. In the basic model, new topics
emerge locally, first on the document level, then on cluster

Figure 2: Document positions (left) and geograph-
ical network (right) for the car dataset (Section 4.1)

level and finally on the global level. Under the assumption
that adjacent clusters are likely to be similar, new topics
should be actively shared with neighbour clusters. Sharing
topics through a network of adjacent clusters is a dynamic,
evolutionary process which is similar to the spread of memes
in social networks: Strong topics, which describe observed
documents well, will survive, while poor topics will perish
during the sampling process [8].

We call this model the neighbour aware geographical topic
model (NAM). For defining a spatial adjacency relation,
we decided to use the Delaunay triangulation, obtained as
the dual of the Voronoi tesselation [3]. Triangles with side
lengths greater than 1/8th of the earth radius are discarded.
An example for the resulting geographical network is shown
in Figure 2. Note that other definitions such as k-nearest-
neighbour could have been used as well.

The idea behind the extended topic model is to include
an uncertainty over the cluster membership of documents
in clusters in order to more strongly connect topic distri-
butions of adjacent geographical clusters. Each document
topic distribution is assumed to be drawn either from the
topic distribution of its geographical cluster or from one of
the adjacent cluster distributions. Pl is the union of the
cluster index l and the set of neighbour cluster indices, and
λj indicates from which cluster-specific topic distribution
βsr the document dj was sampled. The set of topic distribu-
tions βs can be used for Bayesian model selection: Given a
uniform prior over the probability for a document dj to be
sampled from Gsr with r ∈ Pl, the sampling equation for λj
is

p(λj = r | z,m, βs) ∝
K∏
k=1

(αsβ
s
rk)mjk (r ∈ Pl) (1)

which is identical to the sampling equation in [7], except
that the weights of the document-specific topic distribution
πj are integrated out. The model structure then is sampled
during Gibbs sampling and the rest of the sampler remains
the same as for the basic model.

3.3 The Multi-Dirichlet Process Based
Geographical Topic Model

The neighbour aware topic model clearly leads to an in-
teraction between adjacent cluster-topic distributions. How-
ever, in some cases this interaction does not yield the in-
tended smoothing. Consider the example of two adjacent
geographical clusters which both have a high probability



for two topics, while other geographical cluster-topic distri-
butions assign very low probabilities to both of the topics.
Now, the probability of this model would clearly be max-
imised if one of the two clusters has a very high probability
for the first topic, and the other cluster for the second topic.
This (unwanted) effect occurs in cases where there are only
few adjacent clusters with high probabilities for a small set
of topics. In practice, this is often the case as data are sparse
and the number of geographical clusters is small.

To overcome this apparent drawback, we introduce a dy-
namic smoothing based on the multi-Dirichlet process (MDP),
a generalisation of the Dirichlet process that combines mul-
tiple base measures into a single mixing distribution over
the space of the base measures.

3.3.1 The Multi-Dirichlet Process
We define the multi-Dirichlet process (MDP) using a no-

tation similar to that used in [16]. Let G1, . . . , GP be prob-
ability measures on a standard Borel space (Θ,B) associ-
ated with positive real parameters α1, . . . , αP . We define
the multi-Dirichlet process MDP(α1, . . . , αP , G1, . . . , GP ) as
a probability measure G over (Θ,B), which for every finite
measurable partition (A1, . . . , Ar) of Θ yields a Dirichlet dis-
tributed random vector, denoted (G(A1), . . . , G(Ar)), with:

(G(A1), . . . , G(Ar)) ∼ Dir(
P∑
p=1

αpGp(A1), . . . ,

P∑
p=1

αpGp(Ar))

(2)

In the following, we will refer to the base measures as parent
distributions of the MDP. An alternative notation of the
concentration parameters α1, . . . , αP is given by

A =

P∑
p=1

αp ηp =
αp
A
, p ∈ {1, . . . , P} (3)

which gives a convenient parametrisation for the MDP:

MDP(A, η1, . . . , ηP , G1, . . . , GP ).

Using the alternative notation, the MDP can be under-
stood as a Dirichlet process with base distribution G0 =∑P
p=1 ηpGp, the weighted sum of parent distributions, and

concentration parameter A. Given a set of observed samples
from G, θ1, . . . , θi−1, the probability of a factor θi ∈ Θ to
be sampled from G can be estimated by integrating out G
using the properties of the Dirichlet distributed partitions
[13] and replacing the base measure with the weighted sum
of parent distributions:

θi | θ1, . . . θi−1 ∼
1

i− 1 +A

i−1∑
j=1

δ(θj) +A

P∑
p=1

ηp
i− 1 +A

Gp

(4)

with δ(θj) being the Dirac delta, giving weight to a single
point θj . We immediately see that a MDP with a single
parent distribution yields a standard Dirichlet process.

3.3.2 Inference
We sample for topic assignments by extending the infer-

ence strategies using the “Chinese restaurant franchise” rep-
resentation given in [16]: For a given two-level hierarchical
Dirichlet process, global“dishes”are introduced, correspond-
ing to the Dirichlet distributed random variables on the first

level from which the Dirichlet process of the second level
samples factors θj . For factor sampling, customers corre-
sponding to the factors θj form Dirichlet distributed groups
sitting at tables in a restaurant and all customers at a table
share the same dish. The number of customers at the ith
table is given by mi and the tables are samples from the
Dirichlet distributed base distribution of dishes. A detailed
explanation of the Chinese restaurant process and its pa-
rameters is given in [16]. The Gibbs sampling equation for
topic assignment zji of word wji in document dj is:

p(zji=k | z−ji,m, βs) ∝ (mjk +
∑
p∈Pl

αpβ
s
pk)f

−xji
k (xji) (5)

for topics already sampled, and

p(zji=k
new | z−ji,m, βs) ∝ (

∑
p∈Pl

αpβ
s
pu)f

−xji
knew (xji) (6)

for new topics where βs
p are mixing proportions of the par-

ent distributions, f
−xji
k (xji) is a topic-specific probability

function with parameters from the parent distribution and
z−ji denotes the set of all topic assignments except for zji.
The number of customers in document dj assigned to the
kth factor is given by mjk.

For sampling the number of components, the MDP can be
interpreted as a multinomial extension of a Dirichlet process.
This becomes apparent if we use the alternative representa-
tion from Eq. 3. Substituting α0 by (a sum of) Aηlp in
Equation 40 from [16] gives:

p(mjk=m | z,m−jk) =
Γ(
∑
p∈Pl

Aηlpβ
s
pk)

Γ((
∑
p∈Pl

Aηlpβspk)+njk)
s(njk,mjk·)·

Amjk·

(
mjk·

mjk1, . . . ,mjkP

) ∏
p∈Pl

(ηlpβ
s
pk)mjkp

(7)

where l is the index of the MDP of document dj with par-
ent distributions Pl. s(n,m) denotes the unsigned Stirling
numbers of the first kind and

(
mjk·

mjk1,...,mjkP

)
the multinomial

coefficient. Note that we keep track of the number of tables
mjkp for every parent distribution and sample them simulta-
neously. mjk· denotes the sum of tables over all parents, njk
is the number of customers (topic assignments) for a given
document and topic. For sampling the tables, we first drop
the Gamma functions which do not depend on m, sample
for the sum of tables mjk· and then sample the parent spe-
cific table counts mjkp from a multinomial with normalised
parameters ηlpβpk.

Sampling the weights βp for each Gp is done using m·kp,
the sum over all tables of topic k and parent p from docu-
ments with parent distribution Gp. If Gp is sampled from
a parent Dirichlet process with concentration parameter α0

and weights β, then

βp ∼ Dir(m·1p + α0β1, . . . ,m·Kp + α0βK , α0βu) (8)

where βk denotes the weight of topic k in the parent Dirichlet
process and βu is the weight of the previously unseen topics.

3.3.3 Estimation of Concentration Parameters
Sampling for concentration parameters αp is similar to the

sampling in Dirichlet processes as described in [16]. Instead
of directly sampling the concentration parameters αp, we



first sample A and then sample η. We use the probability of
the total table counts for all documents in the MDP:

p(ml | n,m, η, A) =∏
j∈Dl

Γ(A)

Γ(A+ nj·)
s(nj·,mj·)A

mj· ·

(
mj·

mj1, . . . ,mjP

) ∏
p∈Pl

η
mjp

lp

(9)

where Dl is the set of documents which is sampled from
the MDP with index l. The left part of the equation is
identical to Equation 44 in [16] with parameter A as con-
centration parameter. Therefore sampling for A is identical
as for a normal DP. The document specific table counts mj·
are obtained by summing over the sampling results from
Equation 7. Obviously, the right side of Equation 9 is a
multinomial again. As η governs the influence of parent dis-
tributions, we can set a symmetric Dirichlet prior over the
sampling parameters for smoothing. For a MDP with index
l we then estimate ηl using:

η̂lp =
m·p + δ

m·· + |Pl|δ
ηl ∼ Dir(δl) (10)

3.3.4 MDP-based Model
The extension of NAM for the multi-Dirichlet process, the

multi-Dirichlet process geographical topic model (MGTM),
is obtained by replacing the model selection for uncertain
cluster memberships by multi-Dirichlet processes. Instead
of sampling for document memberships from the set of po-
tential parent distributions Pl, we use Pl as indices of the
parent base distributions of the MDP. Every document has
several parental base distributions Gsr with r ∈ Pl, the in-
dices of the region of the document and the adjacent regions.
A schematic representation of the resulting dependencies is
shown in Figure 3. The weight of region r in the MDP is
given by ηlr and is sampled during the topic sampling pro-
cess. With a concentration parameter δ > 1 we smooth the
cluster weights of parent distributions. The resulting model
is shown in Figure 1(b). The dashed arrow connecting the
cluster specific topic distributions Gsl and the document spe-
cific distributions Gdj indicates that not every cluster specific
distribution is a parent base distribution of each MDP.

In MGTM, all documents of a given region share the same
MDP and thus the same weights ηl for the parent topic
distributions of the region and its neighbour regions. Each
region stores the influence of its adjacent regions on the topic

r1 r2 r3

d1 d2 d3 d4 d5

d1
d2

d3

d4

d5
r1

r2 r3

Figure 3: The geographical adjacency of regions
(left) is used in the model to derive dependencies of
document-specific topic distributions from the topic
distributions of regions (right). Dependencies from
regions adjacent to the region of a document are
shown in grey.

distribution of the contained documents in the parameter ηl
which is adjusted during the Gibbs sampling process. Given
Pl, the union of the region index l and its neighbour region
indices, ηl assigns a probability to every region to be chosen
as a base topic distribution by the documents Dl in region
l, and thus ηlr is an indicator of similarity between the lth
region and its rth neighbour.

As mentioned, it is possible to smooth the influence of
adjacent regions by setting a Dirichlet prior over η. In con-
trast, a prior for the model selection of NAM (Eq. 1) only
could re-weight but not smooth the probability for cluster
memberships. Using the MDP, we obtain a more flexible
and stable framework for selecting base distributions that
correspond – in our case – to cluster-specific topic distribu-
tions.

The resulting model has an important advantage: For the
neighbour aware model, we made the assumption that ad-
jacent spatial clusters are similar and tried to smooth their
topic distributions. The MDP ensures that the model cre-
ates homogeneous topic distributions for similar adjacent
regions and at the same time prevents a smoothing of dis-
similar regions by adjusting the influence parameter η dur-
ing the sampling process, leading to a dynamic smoothing of
topic regions.

4. EVALUATION
In this section, we demonstrate the ability of our model

to improve the quality of topics by detecting more accurate,
coherent topic areas. The evaluation is in four parts: First,
we compare the basic model, the neighbour aware model, the
multi-Dirichlet process model and a state-of-the-art model
for geographical topic detection, LGTA by Yin et al., us-
ing the datasets and parameters given in [18]. Second, we
analyse the influence of increased region parameters on topic
quality for all four methods. We then compare the runtime
of the presented methods on the largest dataset for growing
region parameters. Finally, we assess the topic quality of
LGTA and MGTM on the largest dataset with a user study.

4.1 Datasets
As the evaluation of topic models is heavily dependent on

the datasets used for comparison, we use existing datasets in
order to guarantee a fair comparison. We use the datasets
from [18] created for the evaluation of the LGTA model.
The datasets consist of photographs with geographic coor-
dinates and text tags from the photo sharing service Flickr.
The landscape dataset contains 5,791 photos, tagged by
“landscape” together with the terms mountains, mountain,
beach, ocean, coast, desert from within the US. Topic mod-
els should recognise separated topics for mountain regions,
coastal regions and desert areas as they belong to different,
almost mutually exclusive geographical landscapes. The ac-
tivities dataset contains 1,931 images, taken within the US
and tagged by “hiking” and “surfing”. These two activities
should be recognised as own topics of behaviour. The car
dataset contains 34,707 globally distributed images anno-
tated with chevrolet, pontiac, cadillac, gmc, buick, audi,
bmw, mercedesbenz, fiat, peugeot, citroen or renault, filtered
for event-like images tagged with autoshow, show, race, rac-
ing. Only the tags from the set of car brands were kept.
Concerning the geographical topics, American, German and
French car brands are expected to be detected. The man-
hattan dataset consists of images from New York containing



the tag manhattan. Different parts of Manhattan should
be detected. For the food dataset, Yin et al. filtered geo-
tagged photos containing the tags cuisine, food, gourmet,
restaurant, restaurants, breakfast, lunch, dinner, appetizer,
entree,dessert and kept 278 co-occurring tags. Cultural food
patterns such as national cuisines are latent topics hidden in
the data [18]. An overview of the data is given in Table 2.

Table 2: Collection period, document count (M)
and vocabulary size (V ) of the datasets used for com-
parison [18]

Dataset Collection period M V

Landscape 09/01/2009 – 09/01/2010 5.791 1.143
Activity 09/01/2009 – 09/01/2010 1.931 408
Manhattan 09/01/2009 – 09/01/2010 28.922 868
Car 01/01/2006 – 09/01/2010 34.707 12
Food 01/01/2006 – 09/01/2010 151.747 278

4.2 Experimental Setting
In order to test the generalisation performance of geo-

graphical topic models, we calculate the word perplexity.
The word perplexity is a widely-used measure in language
modelling, corresponding to the inverse of the geometric
mean of the per-word likelihood of held-out documents [5]
that can be understood as the ability of a topic model to pre-
dict words of new documents. Lower perplexity values indi-
cate a better model. Yin et al. used the word perplexity in
their evaluation of LGTA which they showed to be superior
to GeoFolk [15] and a set of basic geographical topic mod-
els. Models that outperform LGTA in perplexity therefore
also outperform GeoFolk and the basic methods evaluated
by Yin [18].

The comparison between the basic Dirichlet process-based
model and its extensions is needed to test the effect of includ-
ing the additional information of the geographical network in
the model and to compare the multi-Dirichlet process with
a smoothing mechanism based on model selection.

For each perplexity calculation, a random 80% / 20% split
is used to create a training set Dtrain and a test set Dtest.
As explained in Section 3, each document dj is represented
by a word set wj . We calculate the likelihood of words in
held-out documents using the location of documents, the set
of topics and other parameters sampled from the training
dataset. The word perplexity is defined as [5]

perplexity(Dtest) = exp

(
− log(

∏
dj∈Dtest

p(wj))∑
dj∈Dtest

|wj |

)
.

For the hierarchical Dirichlet process-based models, the prob-
ability of a document is given by

p(wj) =
∏

wi∈wj

K+1∑
k=1

θk,wiπj,k

where θk,wi is the probability of word wi under topic k and
πj,k is the document-topic distribution for topic k. K + 1
denotes the index of a previously unseen topic and the topic-
word probability θK+1,wi is given by θK+1,t = 1/V, t ∈
{1, . . . , V } as we use a symmetric Dirichlet prior over the
topic space H from which new topics are drawn.

For convenience, the parameters for the (multi-)Dirichlet

processes are from the first model in [16]. A Gamma(1, 0.1)
prior is assigned to γ and a Gamma(1, 1) prior to α0, αs and
A. The concentration parameters are initialised to 1. For the
multi-Dirichlet process, the weights η of parent distributions
are initialised to 1/P and the concentration parameter is set
to δ = 10. The base measure H is a symmetric Dirichlet
distribution with concentration parameter 0.5, except for
the car dataset where the parameter is set to 5 for smooth
topic-word distributions, as all car brands are expected to
appear in all topic areas. We set the number of iterations of
the Gibbs sampler to a low value of 200. The source code
for MGTM is available from: http://c-kling.de/mgtm.

For the evaluation of LGTA, the parameters from the orig-
inal paper [18] were used. The stopping criterion is set to
a change in log-likelihood lower than 0.0001 and the back-
ground model weight is set to 0.1. LGTA sets a parameter
for the number of normal distributed regions which is anal-
ogous to the number of geographical clusters (Fisher distri-
butions) in the models presented in this paper. For com-
parison, we use identical numbers of regions. The setting
depends on the dataset and is taken from the LGTA paper.

As the number of detected topics varies for models based
on the hierarchical Dirichlet process, each of the HDP-based
methods is run 100 times on each dataset and the result-
ing perplexity is averaged for topic counts with at least ten
samples for all three models. The perplexity of LGTA is
calculated for the same number of topics by averaging over
ten runs.

4.3 Comparison with LGTA
Resulting perplexity scores for each model are given in

Figure 4 (a)-(e). The experiments show that the base model,
NAM and MGTM are superior to LGTA for all datasets.
This finding can be explained by the ability of the models to
model document-specific topic distributions that cannot be
detected by LGTA. However, the performance of the HDP-
based models differs. For the globally distributed datasets
(car and food), MGTM performs significantly better than
the base model and NAM. In contrast, for local datasets with
a small number of regions, all HDP-based methods perform
comparably well.

The dynamic smoothing by MGTM helps to detect co-
herent topic regions and can effectively improve the topic
quality for large, complex structured data while for simple
datasets the basic model performs similar or even better.

4.4 Effect of the Region Parameter
To further investigate the behaviour of MGTM for com-

plex structured regions, we repeat the experiments for the
three datasets with the smallest number of regions but in-
crease the region parameter by a factor of ten. The re-
sults are given in Figure 4, (f)-(h). For an increased num-
ber of regions, MGTM shows an improved perplexity for
all three datasets and outperforms the basic and neighbour-
aware model, demonstrating its ability to effectively exploit
the adjacency relation between regions for sharing topic in-
formation.

The effect of a growing number of regions for the car
dataset at a fixed number of five topics is plotted in Fig-
ure 4, (i). The car dataset is adequate to demonstrate the
usage of geographic information in the topic models as the
documents contain only a single word, meaning that intra-
document co-occurrences of words do not contribute to the

http://c-kling.de/mgtm
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(i) car, 25 – 750 regions
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Figure 4: Comparison of average word perplexity
for LGTA, the basic model, NAM and MGTM for
given topic and region counts. Lower values are bet-
ter. The HDP-based models sample the number of
topics, therefore the average perplexity is shown for
topic counts that occur in at least 10 out of 100 runs
for each method. For the car dataset, the perplexity
at five topics is shown in (i) for growing numbers of
regions.

model creation. We observe that LGTA, the basic model
and MGTM improve the topic quality for increased region
parameters, but the improvement of MGTM is considerably
larger than for LGTA and the basic model. The dynamic
smoothing based on the MDP helps to improve the topic
quality by exchanging topic information between similar ad-
jacent clusters. In contrast, the perplexity of NAM dramati-
cally gets worse for larger region counts due to the instability
of the naive smoothing mechanism based on model selection.

4.5 User Study
A lower perplexity does not always indicate an improved

topic quality [6]. Therefore we conducted a user study eval-
uating the semantic coherence of words within the topics
detected by LGTA, the basic model, NAM and MGTM for
the food dataset with 1000 regions at 4, 6 and 8 topics. Fig-
ure 3 shows the words with the highest probability for the
topics detected by LGTA and MGTM at eight topics. Par-
ticipants performed the “word intrusion” task introduced by
Chang et al. [6]: For evaluating a topic, users are presented
with a set of six words, which consists of the five words with
the highest probability under the topic and a word from an-
other topic from the same model. The user’s task is to “find
the word which does not fit with the other words”. In case
of semantically coherent topic words, the intruder can be
easily found. To additionally test the interaction between
topics, the intruding word was chosen from a set of words
which had a low probability (not in the top 25 words) in the
evaluated topic and a high probability (top 5 of the remain-
ing words) in another topic. The study was conducted with
31 users which were presented with word sets in a random
order of models and topics. Only one word set per model-
topic combination was shown to the user and a total of 1,446
of word sets were rated.

In order to measure the quality of a model, we calcu-
late an overall model precision (the percentage of intruders
detected by participants) and per-topic precisions within a
given model.

Table 4 shows the average precision and the median of
the per-topic precisions for all four models. Clearly, MGTM
performs considerably better with both an average model
precision and median model precision of around 0.8 com-
pared to about 0.6 for LGTA. Only for the case of 4 topics,
the neighbour-aware model shows a comparable precision.
However, for 6 topics the precision is worse compared to
LGTA and for 8 topics it is only slightly better. Similarly,
the basic model is worse than LGTA for 4 topics and only
slightly better for 6 and 8.

To analyse the distribution of the per-topic precision, the
corresponding box-and-whisker plot for the case of 8 topics
is given in Figure 5. Clearly, the quality of the topics de-

4 topics 6 topics 8 topics
avg / median avg / median avg / median

LGTA 0.67 0.64 0.57 0.57 0.60 0.58
Basic 0.45 0.57 0.63 0.61 0.64 0.58
NAM 0.79 0.75 0.51 0.48 0.64 0.60
MGTM 0.79 0.80 0.82 0.81 0.78 0.75

Table 4: Model precision and median of per-topic
precisions for LGTA, the basic model, NAM and
MGTM on the food dataset with 1000 regions.



Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Map of Topic 1
L

G
T

A
fish chocolate japanese vegetarian wine chinese mexican sushi
seafood cheese sushi vegan italian chicken bbq thai
rice bread ramen chocolate coffee noodles chicken korean
shrimp fish fish baking french soup burger japanese
crab wine noodle bread pizza rice sandwich salmon
lobster tapas sashimi cheese chocolate vietnamese fries rice
chicken orange noodles bacon bakery dimsum hamburger tuna

M
G

T
M

seafood chocolate japanese salad wine chinese mexican bbq
fish icecream sushi cheese pizza thai tacos burger
lobster strawberry fish tomato coffee chicken taco fries
shrimp baking ramen bread italian rice salsa hamburger
crab cream sashimi chicken pasta soup burrito grill
wine coffee rice fish cheese noodles chicken chicken
salmon pie salmon vegetarian french korean chips sandwich

Table 3: Topic descriptions for the food dataset detected by LGTA and MGTM. The topics of MGTM were
reordered to match the topics of LGTA. The maps show the positions of documents with an above average
probability for Topic 1 as detected by LGTA (top) and MGTM (bottom).
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Figure 5: Boxplots of model precision for LGTA,
the basic model, NAM and MGTM on the food
dataset with 1000 regions, 8 topics. Higher is better.

tected by the basic model and NAM is mixed – the per-topic
precision ranges from very low values of about 0.2 to high
values greater than 0.8. The precision of LGTA is more con-
sistent, as the topic precision is closer distributed around the
median with only one outlier. Finally, the per-topic preci-
sion of MGTM is high for all topics and most homogeneous
among all models.

The human evaluation supports the findings of the per-
plexity comparison – indeed, MGTM detects semantically
more coherent topic-word distributions by exploiting the
spatial structure of topics using dynamic smoothing. The
differences between LGTA and MGTM can be explained by
taking the topics from Table 3 as an example:

Topic quality. The key difference between LGTA and
MGTM is the semantic coherence of the topic-word distri-
butions. Topic 2 of LGTA assigns high probabilities to the
terms chocolate, cheese, bread and fish. By contrast, the
most similar topic of MGTM contains the semantically re-
lated words chocolate, icecream, strawberry and baking – all
related to desserts. The incoherent word-selection of LGTA
is due to the fact that these tags often occur within a small
region and repetitions of similar word combinations in adja-
cent regions are not taken into account sufficiently.

Globality. The first topic from LGTA and the correspond-
ing topic from MGTM mostly contain terms related to sea-
food. Clearly, the words rice and chicken from the seafood
topic of LGTA do not fit – they often occur in Asia, where

many photos of seafood are located. The seafood topic from
MGTM is more coherent – it assigns a high probability to
the word wine, as it is often consumed together with fish
across Europe. From this example, we can see that the top-
ics of LGTA are heavily influenced by local, region-specific
patterns in tag co-occurrences whereas MGTM more is in-
fluenced by intra-document co-occurences of tags and the
global distribution of topics. The reason is that LGTA does
not model document specific topic distributions, instead, all
documents within a region share the same topic distribution
and therefore individual deviations from the regional topics
are not recognised in the model. In contrast, MGTM al-
lows for document-specific topic distributions and permits
deviations from the regional topic distribution. By detect-
ing single documents fitting the topic of seafood in coastal
regions all over the world, and by exchanging this topic infor-
mation over the network of adjacent regions, a global topic
of seafood is established.

Support for non-compact topics. Some of the topics de-
tected in the food dataset are expected to exhibit a complex
spatial distribution. As mentioned before, MGTM is able
to detect such complex spatial structures. To give an exam-
ple, the maps in Table 3 show the geographical distribution
of documents with a higher-than-average probability for the
seafood topic (Topic 1) as detected by LGTA and MGTM.
We expect Topic 1 to have a distribution along coastlines.
We see that this is the case for Topic 1 of both LGTA and
MGTM, which covers both countries where fish is regularly
eaten (such as the UK and the Netherlands) and countries
where the seafood topic mainly appears at the coast (e.g.
Spain, France). However, the geographical distribution of
the seafood topic of LGTA has a large gap on the coast be-
tween Spain and France and is not detected in Denmark or
on mainland Italy. The reason is that there are not many
photos showing seafood in those areas and therefore the
evidence is not sufficient for LGTA. Due to the dynamic
smoothing of adjacent areas, MGTM still is able to detect
such topics and thus correctly detects the seafood topic in
documents along the whole coastline as seen on the map.

4.6 Runtime Comparison
Another advantage of the HDP-based models is the sep-

aration of geographical clustering and the topic sampling
step. By excluding the distance calculation between every
document and every region centre from the slowly converg-
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Figure 6: Average runtimes (in seconds) of LGTA,
the basic model, NAM and MGTM for the food
dataset at growing numbers of regions. Note that
the y-axis is a log scale.

ing topic sampling process, we expect to dramatically de-
crease the runtime of our methods.

For comparing the runtime of the distinct methods, we op-
timised the implementation of LGTA provided by Yin and
measured the runtime on the largest dataset for different set-
tings of the region parameter on a 2.8GHz CPU with 72GB
of RAM using a single core. The topic parameter of LGTA
is set to 7. The runtime in seconds is given in Figure 6. We
see that the runtime of LGTA linearly grows with a higher
region count, as in every iteration every document has to
be compared with every region for sampling its membership
probability. On the other hand, the models presented in this
paper use a separate geographical clustering step that can be
efficiently implemented and takes only a fraction of the total
runtime. The topic sampling is practically not influenced by
the number of regions as it only creates additional region-
specific topic distributions. MGTM shows a higher runtime
compared to the basic model as the sampling of region-topic
distributions in the multi-Dirichlet process is more expensive
than in a normal hierarchical Dirichlet process. In return,
for a larger number of regions, MGTM detects and merges
topics with a coherent spatial distribution which results in
a lower number of detected topics and a slightly decreased
runtime. MGTM thus has a significantly reduced runtime
and can be applied to much larger datasets.

Furthermore, it is straightforward to implement a dis-
tributed algorithm for MGTM as the distributed Gibbs sam-
pling equations for hierarchical Dirichlet processes from [14]
can be directly applied to multi-Dirichlet processes and region-
specific topic distributions can be shared across processors
with dependent document-topic distributions using the same
technique as for sharing topics across processors.

5. CONCLUSION
The results from the user study and extensive quantita-

tive evaluation of our model show a clear improvement in
topic quality compared to state-of-the-art methods in topic
modelling. MGTM detects more meaningful topics as mea-
sured by the perplexity and higher precisions in the user ex-
periments. Additionally, the runtime analysis demonstrates
that our method is highly efficient and thus suitable for
large-scale applications. The model is the first to make use
of adjacency relations between groups of documents for a
dynamic smoothing of topic distributions. Our method is
based on a multi-Dirichlet process (MDP), a generalisation

of the Dirichlet process introduced in this paper. The im-
proved performance of MGTM at higher numbers of regions
shows that in real-world datasets, many geographical top-
ics have a complex, non-Gaussian spatial distribution and
that their detection can be supported. The presented topic
model is just one example of how to use the MDP for dy-
namic smoothing. We currently are experimenting with in-
tegrating the MDP in other existing topic models to account
for relations between groups of documents.

6. ACKNOWLEDGEMENTS
This work was supported by the EU 7th FP under grant

number IST-FP7-288815 in project Live+Gov (liveandgov.eu)

7. REFERENCES
[1] A. Agovic and A. Banerjee. Gaussian process topic

models. CoRR, abs/1203.3462, 2012.

[2] A. Ahmed, L. Hong, and A. Smola. Hierarchical
geographical modeling of user locations from social
media posts. In WWW, 2013.

[3] F. Aurenhammer. Voronoi diagrams – a survey of a
fundamental geometric data structure. ACM Comput.
Surv., 23(3):345–405, 1991.

[4] A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra.
Clustering on the unit hypersphere using von
Mises–Fisher distributions. JMLR, 6:1345–1382, 2005.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
Dirichlet allocation. JMLR, 3:993–1022, Mar. 2003.

[6] J. Boyd-Graber, J. Chang, S. Gerrish, C. Wang, and
D. Blei. Reading tea leaves: How humans interpret
topic models. In NIPS, 2009.

[7] K. R. Canini and T. L. Griffiths. A nonparametric
Bayesian model of multi-level category learning. In
AAAI, 2011.

[8] R. Dawkins. The Selfish Gene. OUP, 2006.

[9] R. Fisher. Dispersion on a sphere. Royal Society,
217(1130), 1953.

[10] T. Hofmann. Probabilistic latent semantic analysis. In
UAI, pages 289–296, 1999.

[11] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and
K. Tsioutsiouliklis. Discovering geographical topics in
the Twitter stream. In WWW, pages 769–778, 2012.

[12] Q. Mei, C. Liu, H. Su, and C. Zhai. A probabilistic
approach to spatiotemporal theme pattern mining on
weblogs. In WWW, pages 533–542, 2006.

[13] R. M. Neal. Markov chain sampling methods for
Dirichlet process mixture models. J. Comp. Graph.
Stat., 9(2):249–265, 2000.

[14] D. Newman, A. U. Asuncion, P. Smyth, and
M. Welling. Distributed algorithms for topic models.
JMLR, 10:1801–1828, 2009.

[15] S. Sizov. GeoFolk: latent spatial semantics in Web 2.0
social media. In WSDM, pages 281–290, 2010.

[16] Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical
Dirichlet processes. JASA, 2006.

[17] C. Wang, J. Wang, X. Xie, and W.-Y. Ma. Mining
geographic knowledge using location aware topic
model. In GIR, pages 65–70, 2007.

[18] Z. Yin, L. Cao, J. Han, C. Zhai, and T. S. Huang.
Geographical topic discovery and comparison. In
WWW, pages 247–256, 2011.


	Introduction
	Geographical Topic Models
	Methods Using Discrete Locations
	Methods Using Continuous Locations
	Drawbacks of Existing Methods

	Model
	The Basic Model
	Geographical Clustering
	Topic Detection

	The Neighbour Aware Model
	The Multi-Dirichlet Process Based Geographical Topic Model
	The Multi-Dirichlet Process
	Inference
	Estimation of Concentration Parameters
	MDP-based Model


	Evaluation
	Datasets
	Experimental Setting
	Comparison with LGTA
	Effect of the Region Parameter
	User Study
	Runtime Comparison

	Conclusion
	Acknowledgements
	References

